UED

K.C. Kong L.T.Wang

BNL Energy frontier Workshop, April 5, 2013

Overview on UED

- Universal: all SM particles in flat ED
- The simplest model: S1/Z2 (5D)
- KK-parity:
 - all SM particles (zero mode) are even
 - level 1 KK particles (n=1) are odd
 - level 2 KK particles (n=2) are even
 - electroweak precision constraints are avoided
 - new contributions are loop-suppressed
 - the LKP is stable and a DM candidate

Universal Extra Dimensions

- MUED: Minimal Universal Extra Dimensions (cf. mSugra)
- 2UED:Two Universal Extra Dimensions (GMSB)
- nUED: non-minimal Universal Extra Dimensions
 - boundary terms
- SUED: Split Universal Extra Dimensions (cf. Split SUSY)
 - bulk terms
- sUED: UED with singlet extension
- NMUED: Next-to-Minimal UED
 - (with boundary and bulk terms)

More on UED

- Minimal UED: mass splitting be generated by radiative corrections (assuming no boundary terms and no bulk masses)
- Short RG running leads to compressed mass spectrum
- Larger production cross sections (compared to SUSY productions), i.e., KK gluon, KK quark productions
- SUSY-like cascade decays at the LHC from the first KK modes.

Distinct feature: 2nd KK modes...

Minimal UED

Two parameters: R, Lambda (cutoff)

Cheng, Matchev, Schmaltz, 2002

Minimal UED

Two parameters: R, Lambda (cutoff)

Cheng, Matchev, Schmaltz, 2002

Level 2: KK resonances

Datta, Kong, Matchev 2005

KK Dark Matter: abundance

O(1) TeV KK photon

 Coannihilation with SU(2)-singlet KK leptons lowers LKP mass to ~ 600 GeV.

Belanger, Kakizaki, Pukhov, 2010

KK Dark Matter: direct detection

- Direct detection hard
- Treat mass splitting as a free parameter (better chance for direct detection)

KK Dark Matter: indirect detection

Indirect detection: lepton final states, positron/neutrino/photon flux

KK Dark Matter: complementarity

- Treat the LKP mass and mass splitting as free parameters.
- Gives a better chance for the LHC, and direct detection.

- Yellow: 4 leptons plus MET at 14 TeV LHC with 100 fb-1
- Green: relic abundance

Arrenberg, Baudis, Kong, Matchev, Yoo 2008

NMUED

Flacke, Kong, Park 2013

$$S_{5} = \int d^{4}x \int_{-L}^{L} dy \left[\mathcal{L}_{V} + \mathcal{L}_{\Psi} + \mathcal{L}_{H} + \mathcal{L}_{Yuk} \right]$$

$$\mathcal{L}_{V} = \sum_{A}^{G,W,B} -\frac{1}{4} \mathcal{A}^{MN} \cdot \mathcal{A}_{MN}$$

$$\mathcal{L}_{\Psi} = \sum_{\Psi}^{Q,U,D,L,E} i \overline{\Psi} \overrightarrow{D}_{M} \Gamma^{M} \Psi - M_{\Psi} \overline{\Psi} \Psi$$

$$\mu \theta(y) = M_{Q,L} = -M_{U,D,E}$$

$$M_{\Psi}(y) = -M_{\Psi}(-y).$$

$$\mathcal{L}_{H} = (D_{M}H)^{\dagger} D^{M}H - V(H),$$

$$V(H) = -\mu_{5}^{2} |H|^{2} + \lambda_{5} |H|^{4},$$

$$\mathcal{L}_{Yuk} = \lambda_{5}^{E} \overline{L}HE + \lambda_{5}^{D} \overline{Q}HD + \lambda_{5}^{U} \overline{Q}\tilde{H}D + \text{h.c.}$$

$$S_{bdy} = \int d^4x \int_{-L}^{L} dy \left(\mathcal{L}_{\partial V} + \mathcal{L}_{\partial \Psi} + \mathcal{L}_{\partial H} + \mathcal{L}_{\partial Yuk} \right) \left[\delta(y - L) + \delta(y + L) \right]$$

NMUED

Flacke, Kong, Park 2013

fermion bulk masses $M_{Q,U,D,L,E}$ boundary gauge parameters r_G, r_W, r_B boundary Higgs parameters r_H, r_μ, r_λ boundary fermion parameters $r_{Q,U,D,L,E}$ boundary Yukawa couplings $r_{\lambda U,D,E}$

- To avoid tree-level FCNC, set all M and r flavor blind -> 19.
- For $r_{\mu} \neq r_{\lambda}$, bulk VEV and boundary VEV different.
- To avoid KK mode mixing, set all r's the same.
- Assume universal bulk masses.

NMUED: couplings

Flacke, Kong, Park 2013

NMUED: couplings

KK2--SM fermion coupling enhanced

Flacke, Kong, Park 2013

NMUED

For universal boundary and universal bulk mass

HF4: UED Benchmarks

- We propose the following:
 - Consider 5D UED only
 - 6D model needs to address an issue with DM (too low KK scale)

– Minimal UED

- two parameters: R and ∧ (cutoff)
- cutoff dependence: log(RΛ)
- mass spectrum from radiative correction (no boundary terms)
- Include Δ_{q1} , explore the connection with direct detection.

NMUED with brane terms for strong sector

- two additional parameters: bulk mass term μ, boundary parameter r.
- New signals: 2nd resonance ⇒ SM quarks, ...

Signatures (standard SUSY search + resonances)

- level 1: jets + n-leptons + met, n=0,1,2,3,4
- level 2: dijet, dilepton and lepton-neutrino final states

Please give suggestions, and in particular, offer your help!